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NOMENCLATURE 

Stanton number: 
drag coefficient: 
Grashof number: 
Prandtl number: 
local Nusselt number; 
Nusselt number for mean heat-transfer: 
defined within: 
defined within: 
defined within: 

constants of the universal 

INTRODUCTION 

EXPRESSIONS for the drag on plates. or for pipe friction, due 
to turbulent flow gained a dramatic increase in range of 
validity when power-law expressions (depending on the 
seventh root velocity distribution) were replaced by the 
Schoenherr-von Karman logarithmic laws (based on the 
universal logarithmic velocity distribution). Moreover, a 
three-part piecewise analytic version of the universal velocity 
distribution leads to 
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wherein. according to von Karman. 

$(a)= 5{(u-l)+ln[1+5(u-1)/6]). 

although other valid expressions for $ exist. All this is clear 
from standard works [ 1.21. 

Eckert and Jackson [3] gave. for turbulent natural con- 
vection. an analysis based on similar profiles tending to the 
seventh root law near the wall. We here briefly report a 
successful application of the universal velocity profile to this 
problem. 

PRINCIPLES OF THIS ANALYSIS 

It is assumed that thevelocity distribution in the boundary 
layer follows the established universal law up to the point 
at maximum velocity. The related temperature distribution 
is used throughout. continuing linearly on the temperature- 
In (distance) plane up to the outer edge of the boundary 
layer. It is postulated that the velocity distribution is linear 
on the velocity-ln (distance) plane beyond the maximum. 
but with a reversed gradient compared with that before the 
maximum. 

These profiles. substituted in the equations for the 
momentum and energy integrals for the boundary layer, 
lead to inhomogeneous non-linear ordinary differential 
equations for which asymptotic solutions may be found. 

RESULT OF ANALYSIS 

It is found that 
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where 

+f [lo+ILlu)]. 

K and no are constants of the universal velocity profile and 
the function t(ro) must satisfy 

to = t+ln(t)R. 

It follows that 

m/N z (2r + 1)/(3t - 3). 

On inserting the constants and using an approximate 
solution for t(rc). we have the practical result 

N = 0.0605[G~~,?]“~. 

t = to -f1n(0.9r0). 

r. = tin 2 +3$(u). 
( i ,193 

COMPARISON WITH EXPERIMENT 

Values of N calculated from the theory agree well with 
Cheesewright’s [4? observations, using air. for IO” < G -z 
10”. For G = 10 z and u = 1 we find that to = 11.2 and 
t = 10.0. Thence, we predict N = 1920 and m = 1500. This 
agrees with Jakob’s correlation [5]. 

DISCUSSION 

That N should tend to a function of the Boussinesq 
number Gu2, for large G or small u has long been known. 
Indeed the ultimate cancellation of viscosity and thermal 
conductivity requires that N should become asymptotically 
proportional to u JG. as found here. That N fails to become 
a function of the Rayleigh number, Go, for large u may be, 
at first, surprising. The theory is found to suggest that the 
critical Grashofnumber for the onset of turbulence is roughly 
6 x 10g(l ++(u)/l9). Crude though this estimate be, it is 
clearly dominated by i&u)-and hence by u-for large u. 
So, if u tends to infinity, then turbulence is unattainable for 
finite G. 

It is well known that the use of the boundary-layer 
integrals can lead to good results for heat-transfer even when 
the profile is erroneous. We therefore do not claim that the 
successful results confirm the assumed profile. 

On the other hand, since the mathematical approxi- 
mations made become ever more valid the higher the value 
of G. and since, as has already been seen, the asymptotic 
behaviour for large G accords with long-recognized general 
principles. we make bold to claim that our result is well 
suited for indefinite upward extrapolation. We know of no 
other result free from disastrous failure as G is increased 
without bound. 

We hope to report this work in extenso during 1976. 
I dedicate this brief communication to the memory of my 

old friend and colleague, Allan Ede. 
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